
Purge
The modular external cache invalidation framework.

The Purge module for Drupal 8 enables invalidation of content from external caches, reverse proxies and
CDN platforms. The technology-agnostic plugin architecture allows for different server configurations and
use cases. Last but not least, it enforces a separation of concerns and should be seen as a middleware
solution.

Drush commands

The module adds the following commands for Drush administration:purge_drush

Command Alias Description
p-diagnostics pdia Generate a diagnostic self-service report.

p-invalidate pinv Directly invalidate an item without going through the queue.

p-processors ppro List all enabled processors.

p-queue-add pqa Schedule an item for later processing.

p-queue-browse pqb Inspect what is in the queue by paging through it.

p-queue-empty pqe Clear the queue and reset all statistics.

p-queue-stats pqs Retrieve the queue statistics.

p-queue-work pqw Claim a chunk of items from the queue and process them.

p-queuers pqrs List all enabled queuers.

p-types ptyp List all supported cache invalidation types.

Several commands understand the parameter allowing you to integrate the commands in external--format

scripts with JSON or YAML output. See the respective information for moredrush help <command>

command detail.

The framework explained

Purge isn't just a single API but made up of several API pillars all driven by plugins, allowing very flexible
end-user setups. All of them are clearly defined to enforce a sustainable and maintainable framework over the
longer term. This also allows everyone to build, improve and fix bugs in only the plugins they provide and
therefore allows everyone to 'scale up' solving external cache invalidation in the best way possible.

Queuer

With Purge, end users can manually invalidate a page with a Drush command or, theoretically, via a "clear
this page" button in the GUI. Caches are however meant to be transparent to end users and to only be
invalidated when something actually changed - and thus requires external caches to also be transparent.

When editing content of any kind, Drupal will transparently and efficiently invalidate cached pages in
Drupal's own . When Drupal renders a page, it can lists all the rendered items on theanonymous page cache
page in a special HTTP response header named . For example, this allows all cachedX-Drupal-Cache-Tags

pages with the Cache-Tag in their headers to be invalidated, when that particular node (node/1) isnode:1

changed.

Purge ships with the , which replicates everything Drupal core invalidated onto Purge'sCore tags queuer
queue. So, when Drupal clears rendered items from its own page cache, Purge will add a objectinvalidation
to its queue so that it gets cleared remotely as well.

Queue

Queueing is an inevitable and important part of Purge as it makes cache invalidation resilient, stable and
accurate. Certain reverse cache systems can clear thousands of items under a second, yet others - for instance
CDNs - can demand multi-step purges that can easily take up 30 minutes. Although the queue can technically
be left out of the process entirely, it will be required in the majority of use cases.

Statistics tracker

The statistics tracker keeps track of queue activity by actively counting how many items the queue currently
holds and how many have been deleted or released back to it. This data can be used to report progress on the
queue and is easily retrieved, the data resets when the queue is emptied.

Invalidations

Invalidations are small value objects that on one or more external cachingdescribe and track invalidations
systems within the Purge pipeline. These objects float freely between and but can also bequeue purgers
created on the fly and in third-party code.

Invalidation types

Purge has to be crystal clear about what needs invalidation towards its purgers, and therefore has the concept
of invalidation types. Individual purgers declare which types they support and can even declare their own
types when that makes sense. Since Drupal invalidates its own caches using cache tags, the type is thetag

most important one to support in your architecture.

domain Invalidates an entire domain name.
everything Invalidates everything.
path Invalidates by path, e.g. .news/article-1

regex Invalidates by regular expression, e.g.: .\.(jpg|jpeg|css|js)$

tag Invalidates by Drupal cache tag, e.g.: .menu:footer

url Invalidates by URL, e.g. .http://site.com/node/1

wildcardpath Invalidates by path, e.g. .news/*

wildcardurl Invalidates by URL, e.g. .http://site.com/node/*

Purgers

Purgers do all the hard work of telling external systems what to invalidate and do this in the technically
required way, for instance with external API calls, through telnet commands or with specially crafted HTTP
requests.

Purge , as this is context specific. You could for instance have multiple purgersdoesn't ship any purger
enabled to both clean a local proxy and a CDN at the same time.

Capacity tracker

The capacity tracker is the central orchestrator between limited system resources and a never-ending queue of
cache invalidation items.

The tracker actively tracks how much items are invalidated during Drupal's request lifetime and how much
PHP execution time has been spent. With this information it can predict how much processing can happen
during the rest of request lifetime. It is able to predict this since the capacity tracker also collects timing
estimates from the actual purgers. The intelligence it has is used by the queue service and exceeding the limit
isn't possible as the purgers service refuses to operate when the limits are near zero.

Diagnostic checks

External cache invalidation usually depends on many parameters, for instance configuration settings such as
hostname or CDN API keys. In order to prevent hard crashes during runtime that affect end-user workflow,
Purge allows plugins to write preventive diagnostic checks that can check their configurations and anything
else that affects runtime execution. These checks can block all purging but also raise warnings and other
diagnostic information. End-users can rely on Drupal's status report page where these checks also bubble up.

Processors

With queuers adding invalidation objects to the queue, this still leaves the processing of it open. Sincetag

different use cases are possible, it is up to you to configure a stable processing policy that's suitable for your
use case.

Possibilities:

cron claims items from the queue & purges during cron.
ajaxui AJAX-based progress bar working the queue after a piece of content has been updated.
lateruntime purges items from the queue on every request ().SLOW

API examples

Queueing

Adding invalidations to the queue is the simplest use case and requires a queuer object so that the queue
knows who is adding the given items.

$purgeInvalidationFactory = \Drupal::service('purge.invalidation.factory');
$purgeQueuers = \Drupal::service('purge.queuers');
$purgeQueue = \Drupal::service('purge.queue');

$queuer = $purgeQueuers->get('myqueuer');
$invalidations = [
 $purgeInvalidationFactory->get('tag', 'node:1'),
 $purgeInvalidationFactory->get('tag', 'node:2'),
 $purgeInvalidationFactory->get('path', 'contact'),
 $purgeInvalidationFactory->get('wildcardpath', 'news/*'),
];

$purgeQueue->add($queuer, $invalidations);

What happens now depends on the , as some might purge very quickly afterprocessors you configured
adding items to the queue whereas others might need a time-based delay before this occurs. Items enter the
queue in state and normally leave the processor in the states , , or whenFRESH SUCCEEDED FAILED PROCESSING

no single plugins supported it: . Items that don't succeed, cycle back to the queue until it getsNOT_SUPPORTED

manually cleared.

Invalidation without queue

Processing invalidations without going through the queue is possible, but not the recommended workflow
when your invalidations cannot fail. All it takes is to instantiate invalidation objects and to feed them to the
purgers service.

use Drupal\purge\Plugin\Purge\Purger\Exception\CapacityException;
use Drupal\purge\Plugin\Purge\Purger\Exception\DiagnosticsException;
use Drupal\purge\Plugin\Purge\Purger\Exception\LockException;
$purgeInvalidationFactory = \Drupal::service('purge.invalidation.factory');
$purgeProcessors = \Drupal::service('purge.processors');
$purgePurgers = \Drupal::service('purge.purgers');

$processor = $purgeProcessors->get('myprocessor');
$invalidations = [
 $purgeInvalidationFactory->get('tag', 'node:1'),
 $purgeInvalidationFactory->get('tag', 'node:2'),
 $purgeInvalidationFactory->get('path', 'contact'),
 $purgeInvalidationFactory->get('wildcardpath', 'news/*'),
];

try {
 $purgePurgers->invalidate($processor, $invalidations);
}
catch (DiagnosticsException $e) {
 // Diagnostic exceptions happen when the system cannot purge.
}
catch (CapacityException $e) {
 // Capacity exceptions happen when too much was purged during this request.
}
catch (LockException $e) {
 // Lock exceptions happen when another code path is currently processing.
}

When this code finished successfully, the array holds the objects it had before, but now$invalidations

each object has changed its state. You can now verify this by iterating over the objects and by calling getState()
or on them (the latter is only intended for UI presentation):getStateString()

foreach ($invalidations as $invalidation) {
 var_dump($invalidation->getStateString());
}

Which could then look like this:

string(6) "FAILED"
string(6) "FAILED"
string(9) "SUCCEEDED"
string(10) "PROCESSING"

The results reveal why you should , becausenormally not invalidate without going through the queue
items can fail or need to run again later to finish entirely. The most common use case for direct invalidation is
manual UI purging.

Queue processing

Processing items from the queue is handled by processors, which users can add and configure according to
their configuration. In essence, processors invoke the following code to retrieve a dynamically calculated
chunk of items from the queue and feed those to the purgers service:

use Drupal\purge\Plugin\Purge\Purger\Exception\CapacityException;
use Drupal\purge\Plugin\Purge\Purger\Exception\DiagnosticsException;
use Drupal\purge\Plugin\Purge\Purger\Exception\LockException;
$purgePurgers = \Drupal::service('purge.purgers');

$purgeProcessors = \Drupal::service('purge.processors');
$purgeQueue = \Drupal::service('purge.queue');

$claims = $purgeQueue->claim();
$processor = $purgeProcessors->get('myprocessor');
try {
 $purgePurgers->invalidate($processor, $claims);
}
catch (DiagnosticsException $e) {
 // Diagnostic exceptions happen when the system cannot purge.
}
catch (CapacityException $e) {
 // Capacity exceptions happen when too much was purged during this request.
}
catch (LockException $e) {
 // Lock exceptions happen when another code path is currently processing.
}
finally {
 $purgeQueue->handleResults($claims);
}

